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ON THE UNIQUENESS OF SYMMETRIC BASES 
IN FINITE DIMENSIONAL BANACH SPACES 

BY 

CARSTEN SCHUTT* 

ABSTRACT 

Suppose {e,}~=j and {[,}~=~ are symmetric bases of the Banach spaces E and F. 
Let d(E, F)<= C and d(E, l~)>= n" for some r >0 .  Then there is a constant 
C, = C,(C) > 0  such that for all a, E R, i =  1 , " . ,  n 

,a.e, ll_ aj,[[__<, o,e,l[. 
We also give a partial uniqueness of unconditional bases under more restrictive 
conditions. 

In the first paragraph we prove that symmetric bases in finite dimensional 

Banach spaces are unique up to a constant provided we are not "too close" to a 

Hilbert space. "Too close" is used here in the sense of Banach-Mazur distance. 

Let {e,}7=1 and {f,}~=l be symmetric bases of E and F with d ( E , F ) < = C  and 

d(E,  i~)>= n' for some C, r >0.  Then there is a constant C, = C , (C)>0  such 

that for alla,  ER ,  i = l , . . . , n  

II I1 ,11 cll  II C ;  ~ a,e, <= a <= a , e , .  
i =1 i = 1  

This generalizes a result of Johnson-Maurey-Schechtman-Tzafriri [2]. They 

proved uniqueness of symmetric bases for spaces with a q-concave basis, 

1 =< q <2.  The starting point of their proof was that by 2-concavity the 

1-absolutely summing norm of the identity ~rl(E) is proportional to II Y~7=, e, II and 

II x:=l ~ II. Dropping 2-concavity, we don't know whether IlxT=l e, II and IIxT=, ~ II 
are proportional. This is the main difficulty we have to deal with although it does 

not appear explicitly in the proof. 
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Although our proof differs completely from the proof of Johnson- 

Maurey-Schechtman-Tzafriri there is a common point. Consider the matrix of 

the map A ~ L(E, F) with IIA ]111A -i II = d(E, F) with respect to the bases {e,}7=1 

and ~}7=1. Then, roughly speaking, we prove that the matrix has a "big" 

diagonal. 

This is also the reason why the proof does not work if we come "too close" to 

a Hilbert space. In a Hilbert space all orthogonal bases are symmetric. By now, 

there are a lot of facts suggesting that we have uniqueness of symmetric bases in 

general (in finite dimensional spaces). On the other hand, we would not be too 

surprised if there is a counterexample. 

In the second paragraph we consider unconditional bases. It is known [2] that 

there is no uniqueness of unconditional bases. But we discover a partial 

uniqueness, i.e., a certain percentage of the basis has to be unique. 

Let {e,}7=1 be a symmetric and ~}7=~ an unconditional basis of E and F. 

Suppose d(E, F) <-_ C, cotype2(E) _-< C and one of the bases dominates the unit 

vector basis in lP,, 1 _-<p <2 .  Then there are C* = C*(C,p)>O, e = e(C,p)>O 
and a subset M of {1, . . - ,  n} with IMI >-_ en and 

for all a, E R, i = 1 , . . . ,  n. 

This is used in order to estimate the symmetric basis constant sbc(E) of certain 

spaces. In [2] it was pointed out that if E has an unconditional basis {e,}"=, such 

that for all a, E R, i = 1, �9 �9 n 

then one has 

i ~ l  / ~ | [  i = l  

where s(E) denotes the symmetry constant introduced by Garling and Gordon 
p �9 [11. But for spaces l . |  

II = f a,, f" 
i = l  

we have 

s ( t ~ |  
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so that this cannot be used to estimate sbc(/P,| We get estimations for 

sbc(/~ | l ' ) .  

Thus we give also examples of sequences of spaces E.,  n E N, such that 

s(E,) = ubc (E , )=  1 but sbc(E,) tends to infinity. The first example of this kind 

was given in [3]. 

O. Notation 

The symmetric basis constant sbc({e~ };'~1 ) of a basis {e~ }~=1 of a Banach space E 

is the infimum of all numbers C > 0 such that 

alel <= Eiaie~(i) 
i = 1  

for all signs e~ = +--1, all a~ E R, i = 1 , . . . , n ,  and all permutations 7r of 

{1, . . . ,  n}. The unconditional basis constant ubc({e~}~':,) is the infimum of all 

numbers C > 0  such that 

~aie, <=C[~=le,a,e,[[ 

for all signs e~ = +-- 1, and all a~ E R, i = 1, �9 �9 n. We put 

sbc(E) = inf {sbc({e~}7-, ) [ {e,}7_, is a basis}; 

ubc(E) is defined analogously. 

We say that E has a symmetric (unconditional) basis {e~}7=z if it is normalized 

and sbc({e,}7=,)= 1 (ubc({e,}7=,)= 1). 
The Banach-Mazur distance of two Banach spaces E and F is given by 

d(E, F) = inf {l[ III II I - '  Ill / e Z (Z f)}. 

The 1-absolutely summing norm of an operator A E L(E, F) is given by the 

infimum of all constants C > 0  such that for all sequences {x~}~:, we have 

k k 

~,lla(x,)ll<=c sup ~ I<x,,x*)l. 
i=l IIx*ll= l i=l 

We say that a space has cotype p, 2-<p < ~ ,  with constant C > 0  if for all 

sequences {x,}~=, we have 

where e, = - 1 ,  i =  1 , . . . , k .  
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Of course, we use the Khintchine inequality [4] frequently, 

1 ( s  m ~ 1  I = ( ~  ) ' i=1 ----<2--" i=l~--d e i a i  <2 [ai[  2 1/2 

where el = --1, i = 1 , - . . ,  n. 

By J M I or card M we mean the cardinality of a set M. The entries of the 

inverse matrix A -~ are denoted by bis, i, j = 1,-. -, n. It] is the greatest natural 
number smaller than r, r _-> 1. If r < 1 we put [r] = 1. 

By {e*}L~ we denote the dual basis of {ei}Ll. 

1. On the uniqueness of symmetric bases 

We prove the following theorem. 

THEOREM 1.1. Let E and F be Banach spaces with symmetric bases {ei}Ll and 

~}7=~. Suppose that d (E ,F)<=C and d(E,P,)>-n"  for some C > 0  and r > 0 .  

Then there is a constant C, = C ( C) > 0 such that for all a~ E R, i = 1 , . . . ,  n we 
have 

C~'[[ i=,s a~e~ I1 < [I ,=~ s a~[~ I1 < C, [] ~s a,e, I[" 

For the proof of this theorem we need several lemmas. We start by "slicing" 
matrices. Let A = {a~s}?.s=, be a matrix and A - ~ =  {bis}~.j=, its inverse. Suppose 
that I a~i [ ---< C~ and t b~, t < C2 for all i, ] = 1, . .  -, n. Then we define 

J~ = {j [sign ai s = sign bj~}, 

A ~ J= {j E J;  [ C~2 -k < [ a,s [ ~ C,2 -k§ G2- '  < [ b,, I_- < G 2  -'+1} 

for k,!  = 1 , 2 , 3 , . . . .  

LEMMA 1.2. Let A be a real-valued n x n-matrix and A - I  its inverse. Then 
there are k, ! E N and a subset M of {1,. �9 n} such that 

(i) [Ml>=~n(kl) ~, 

(ii) Ei~A~.,aqb i, >=~(kl) -~ for all i E M. 

PROOF. We observe first that for all i = 1, �9 �9 n there are k and I such that 

(1.1) �88 -2< ~%~_~. J ~ a i j b j i .  

Suppose this is not true. Because of id = A A  1, l a ~ I --< C1 and I bi, [ <= C2 for all 
i,j = 1 , . . . ,  n we get 



Vol. 40, 1 9 8 1  SYMMETRIC BASES IN BANACH SPACES 101 

1=< ~: ai, bJ, =< 2 <~ aqbj,. 
i i k , I  = 1 j i "1 

Since we assume the opposite of (1.1) we get 

1 < 2  l(kl)-2 1[Ir2~ z 

Thus (1.1) is true. So we choose from every row a set A~ ~ satisfying (1.1). We 

group the rows with the same k, l, 

M(k,  1) = {i [ k = k( i)  and I = l(i)}. 

one set M ( k , l )  with [M(k,l)[>-_�88 -2. If not, we get a There is at least 
contradiction: 

{o ,} n = c a r d  M ( k , !  <-<_ IM(k,l)l<= n (kl)-Z<n. 
k . l = l  k , / = l  I 

Of course, we choose as our set M the set M(k,  l) satisfying [M(k, l)[ >-_ ~ n (kl) -2. 
[] 

LEMMA 1.3. Suppose A is a m x n-matrix, m <= n, where in every row there are 

k entries equal to one, the others are zero. By A~ we denote the subset of {1 ,"  ', n} 
of indices of those entries of the i'th row that are one. Then we find for every j, 
l <=j <=n, a subset J of {1 , . . . , n}  with IJJ<=j and for 

(i) ] = 1 , . . . , [ n / k ]  

> l m . ,  
card{i I J (3 A, ~ 0}  = "~ n lK ; 

, 1 2 / n  (if) j = [ n / k ] , . . .  n, at least m m  / rows, i.e., indices i, satisfy 

l_ _jk 
card{Ai 71 J} _-> 760 n n 

PROOF. We define the set J in (i) inductively. There is a sequence (j,, M,)~,=I, 
l _--<j, such that j, E { 1 , . . . ,  n}, M, C{1,--- ,  m} with 

m ,  = IM,[ - ->  ink~n, 

(1.2) 
m, = card U -> 

1=1 

(1.3) 

for all r = 2 , . . . ,  !; 

a " J ' = { i  forf~ s~M,s~M, for t = 1 , . . . ,  !; 
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t-1 < l m . ,  i 
(1.4) ~ m, = a n / K  < ~ m,. 

r=l r=l 

If we have constructed this we have proved (i). Indeed, we choose as J = 

{jl," "',jr } and we have 

I d{  r-1 Mr} 2 l ~ J  k > ~ c a r  M,\ I,.J > > 
r=l 1=1 r=l 

Now we prove the construction. Since A contains km ones this makes mk/n 
ones in the average per column. We choose a column ]1 and a set M1 with 

IM,[ = m l  >= mk/n. If ml > mjk/4n we are done. If not, assume we have already 

chosen I',-1, M,-, and we choose now j, and M,. By (1.4) we know that 

Therefore we have 

r-I ~ 1 Nm,--am. 
l=1 

card{ l 
t=| 

Thus we have in the average in the submatrix defined by the index set 

at least mk/2n ones per column. We choose a column j, in which more than 

~mk/n ones can be found. At  last, we have to check that l_-<]: 

~-1 1 m .    'ktl-1) 2 m, = a;jk 
t=l 

Thus 2 ( / -  1)_---<j. 

The proof of (ii) is essentially a repeated application of (i). In order to prove 

(ii) we assume the converse and construct a contradiction. 

Assume now that (ii) is not true. We construct mutually disjoint subsets J~ of 

{1, . . . ,  n} and subsets N~ of {1, . . . ,  m}, ! = 1,.. . ,  [jk/n], defined by 

. / 1 m j k ]  
N' = {i Icard{{ .,~ J ' } N A ' ) > 2 6 0 n n ~  

such that 
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1 m 2 
(1.5) IN, I f  128 n 

['fl for a l l l  = 1 , . - . ,  n ' 

(1.6) 
> 1 m 2  

card{ i I s  A A ~ # ~ , = 6 4  n ' 

(1.7) 
1 m 2 

card{i ] s n A , #  O and i ~ Nok/,i}>= 1 2 8 n -  

(1.8) 

(1.9) 

I2,1<-_m/k foralll=l,. . . ,[jk/n], 

{ OkJ.l ) 
card U Jt~--<]. 

Two of these conditions are immediately verified: (1.9) follows from (1.8), (1.7) 

follows from (1.5) and (1.6). 

We get Jl by applying (i) with k'  = k and j' = [re~k]. Thus we have I J1 ] --< m/k 
and 

l m  m l m  2 
card {i l J, O A, # O} >=~ n k [-~ ] >= w if- 

thus fulfilling (1.6) and (1.8). Clearly (1.5) is also fulfilled. If riot, (ii) would be 

true with J = J~. But we assume the opposite of (ii). Assume now we have 

already chosen r - 1 sets J~ and choose now the set J,. We consider the submatrix 

described by the index set 

(1.10) {{1,...,m}\N,_l}x{{1,...,n}\{'~__~ s  

By the definition of N,_~ we get for all i ~ N,-1 

((, ) card 1 , . . . , n } \  U s NAi  ->k/2 
1=1 

since [Ail = k for all i = 1 , . . . ,  m. Therefore, every row of this submatri• 

contains at least k/2 ones. We note also that we have because of m N n and (1.5) 

1 m 2 1 
. . . . .  > m.  card{{1, .,m}\N,_,}_-> m 64 n 2 

We apply now (i) to this submatrix (1.10) with k'  = [k/2] and ] '  = [m/k]. We get 

a set J, with IJ, l<=~m/k and 

card{i lJ 'nA'#OI=-8nl  J [ k J 2  > - - - -  = 6 4 n  
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Again, IN, l<-_~m2/n since we assume the opposite of (ii). Else, (ii) would be 

satisfied for J = U;=l Ji. 
It is obvious that we can continue this process at least until r = 0 k / n ] .  

Considering now the sets Ji as constructed above we derive a contradiction. 

We consider the submatrix described by the index set 

(1.11) {~ • {{a,'",m}\Nok,.l}. 

We know by the definition of Nok~, ] that every row of this submatrix contains less 

than ~(m/n) ( j k /n )  ones. On the other hand, we claim that there is a row in 

(1.11) having more than ~ ( m / n ) q k / n )  ones, thus giving a contradiction. 

Indeed, by (1.7) every group of columns contains at least ~ m2/n ones. This 

makes 

[ L k l •  ~ m~L~ 
n j 1 2 8  n - 2 5 6  n n 

ones in all. Since we have at most m rows we have more than ~(m/n) ( jk /n )  
ones in the average per row. []  

LEMMA 1.4. Suppose E and F have symmetric bases {e,}7:1 and ~}~.~ resp. 
Let A ~ L (E, F). Then 

[JAil--> ~V2~=,...max max. IIN e ' [[ '  [ l ~  ( ~  IlA(e""')'f*)12)l'2lJ[ 

where zr varies over all permutations o[ {1,. .- ,  n}. 

PaooF. By using the Khintchine inequality and the triangle inequality we get 

II'll  II IIAII_-  > max max e, I +-(A(e,o,),f*)l[j 
I =  l ,--- ,n /=1  1=1 i = 1  

' ' Ilrl, t  II __> max m a x H 2  e, I(A(e,,,,),[~)12)'2[,. [] 
V2t= , . . ,  II~=l 

LEraMA 1.5. Let {e,}7=~ and {f~}7=1 be symmetric bases o[ E and F. Let 
A E L(E, F) and suppose that in the matrix given by A there are m rows 

((A(ei),[*))7:, 

having at least r entries, equal to one. Then [or 
(i) t = 1 , - . . , [ n / r ]  

II-ll z II II AII --> c e, fi , 
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(ii) t = [ n / r ] , . . . , n  

(m)'~[I I1'11~ II IIa[I->_ C ~ e ,  f, , 
i = l  

where C > 0 is an absolute constant. 

PROOF. We use Lemmas  1.3 and 1.4. We choose a subset J, l J I--< t, of 

{1 , . . - ,  n} such that  L e m m a  1.3(i) is satisfied. Choosing a proper  permuta t ion  zr 

so that  J C{~'(a)]  a = 1 , . . . ,  t} we apply L e m m a  1.4. We get for some C > 0  

IIz II' II '~' II IIA I1--> C e, f, 
II i = l  

I1~ [I' I1~ II >-_ c '  m e, [, . 
n i =1 i =1 

Since we have this for all t = 1 , - . . , [ n / r ]  we have proved (i). (ii) follows 

analogously. []  

LEMMA 1.6. Let  {e~}7=1 and ~ } ~  be symmetric bases of E and F. Let 

A E L(E, F) with IIA II = 1, I Ia- ' l l  <-- C. Consider k, 1 E N (resp. k', I 'E  N) given 
by Lemma 1.2 for the matrix 

((A(e~),f*})7.j=l (resp. ({A-I~) ,  e* })~.~=~). 

Then there is an absolute constant C* = C*( C) > 0 such that for 

{i) t = 1 , - - . , [ . 2 - ~ - ' 1  

C*-'(kl)-8ll ~,11 --<ll~,l[ll~e,ll<c*(kl) all ~,11 
(ii) t = [n2-k- ' ] ,  . .  -, n 

C*-'(kl) -'2 II ~' II --< ~ ~  11 :~' I1 I[ ~', II 

(iii) t = 1 , "  ", [n2 -k'-r] 

c, ,,~,/,rll ~ ell<ll~ el[ll~Wl 
I1~ II <-_ C * ( k ' l ' )  s e, , 
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(iv) t = [n2-k'-"], "" ", n 

I1~ II 11~'+~ [I 11~,,11 C*-l (k ' l ' )  -12 e~ < V'nt-~2 -k'-'' ei 
�9 = - =  i = l  

(v) 
2 ' 

C*-'(klk'l ')-122 (k+'+k'+'')'2 <-- ei 
i = 1  

< C,(klk,l,)122(k+,*k'+,')/2. 

PROOF. Since liA[I-- 1 and I[A '[I-_<c we have 

I(A(e,),f*)[_-<l and [ ( A - ~ ) , e * ) l < C  

for all i, j = 1 , . . . ,  n. Thus we get by L e m m a  1.2 that  there are k, I ~ N and more 

than ~n(kl )  -2 rows, i.e., indices i, with 

,g~ ,  (A (es), [*) (A - ' ~ ) ,  e*) > ~(k l )  -2 

and 

2 -k < I(A(e,),  f* ) I < 2  -k+', 

for all j E A ~". In particular we get 

C2-' < I (A-l(fi,), e*)l = C2 -'+' 

(1.12) ~C-'(kI)-22 k"  <-_ [ A ~"[. 

Now we apply L e m m a  1.5 to A with m = [~ n(k l )  -2] and r = [~ C-'(ki)-22 k*' ]. 

After  using the triangle inequality we get for a constant  C ' =  C ' ( C ) >  0 

I1~ III 2~,11 l=l lAll>-_ C'2-k(k l )  -4 e, 
i = 1  

(1.13) 
for t = 1 , . . . , [ n 2  k-,], 

I1~ [Irl~ II 1 = IIA II >= C'2-k(kl )  8 X / t 2 k + ' n - '  ,=, e, 

(1.14) 
for t = [n2 -k ' ] , . . . ,  n, 

If~ I I1~ II C>=IIA-II[>-c'2 ' (ki)  -4 e~ [* 

(1.15) 
for t = 1 , . . . , [ n 2  -k-I] 
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(1.16) 

For t = 1 we get from (1.13) and (1.15) 

By duality we get 

C'-12-~ 4 > i and 
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C e l l A - ' l l - - -  > e* IT 
i = l  " z  

for t = [n2-k-'],  "" ", n. 
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k + l  

k + l  1 

Putting this into the formulas (1.13)-(1.16) we get (i) and (ii). Indeed, the left 

hand side inequalities follow from (1.13) and (1.14) and the right hand side 

inequalities are obtained from (1.15) and (1.16) by dualization. Clearly, (iii) and 
(iv) are achieved the same way. 

We prove (v). By (ii) we get for t = n 

n n - I  

C * - ~ ( k l ) '2 ~ <-- [t ~ e' l[ ll ~ /' ll ,,lt ~ '  [' = , 

<= C*(kl) '~ V ~ ' .  

And by (iv) we get for t = n 

n n 2 k "+r 

C*-'(k' l')-'~ ~ <-_ II ,~=, /' II It ~_ e, II-' II ~ e, II 

C*(kl)'2 V2 k'*''. 

By multiplying these inequalities we get (v). []  

LEMMA 1.7. Let {e~}7=1 and ~ } ~  be symmetric bases of E and F. Let 
A E L (E, F) with II A II = 1, II a -111 < c. Consider k, ! E N (resp. k', l' E N) given 
by Lemma 1.2 for the matrix 

((A(ej),f~))7.j~ (resp. ( ( A - I ~ ) ,  e*))7.s=l). 

Then there is an absolute constant C* = C*(C) > 0 such that 
(i) j : 1,--- ,  [n2 -k-'-k' "] 

e, ll=<2'  "k""211 e, II II II i = I 
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(ii) j = [n2-k-'-k'-r], "" ", n 

c . . , ~ , ~ , , .  II ~ ~. II ~- ~ 11,r e I[ ~ C',~,~, ,~ II ~ e' U 
(iii) j = 1 , . . . ,  n 

i 

where t satisfies 2 "k§247247 >-_ n and [3 > 0 is an absolute constant. The same 

inequalities hold for the basis {fi}Z~. 

PROOF. For simplicity of notation we introduce r = 2 k§ s = 2 k'§ By Lemma 

1.6(i) and (iii) we get 

II ~ II tl ~ II '11 '~ II C* '(kl) -8 e, <= ~ fi f o r j = l , . . . , [ n / r ] ,  

If '~ I111~ It I[~ II C*- ' (k ' l ' )  -s ~ <-_ e, e, fo r j  = 1 , . . . ,  [n/rs]. 
i = 1  i ~ l  

Combining these two inequalities we get for all j = 1 , . . . ,  [n/rs] 

' - '  " II - ' 1 1 ' '  

By Lemma 1.6(v) we get now the left hand side inequality of (i). The right hand 

side inequality is achieved in the same way. 

We prove now (ii). We prove that for j = [n i t s ] , . . . ,  n we have for some 

C* > O, 

C*-:(Mk'I ' )-:4U~ e, II 

II II II II It~ It (1.17) - - < ~  i__~lfi ,=,~'ei e, 

From these inequalities and Lemma 1.6(v) the inequalities (ii) follow. We have to 

consider two cases, j = [ n / r s l , ' " , [ n / r l  and j = [ n / r l , " ' , n .  If j = 

[n/rsl,'" ",[n/rl we get by Lemma 1.6(i) and (iv) 
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C" "~" 8 II ~ e llo II ~ '11-1 ,,~ '11 
jr s --1 

Combining these two inequalities we get the left hand side inequality of (1.17). 

The right hand side inequality is established in the same way. 

If j = [ n / r ] , . . . ,  n we have by Lemma 1.6(ii) and (iv) for t = n 

~,_,,~/,_i~tl,:,~:e, ql ~ ~,,.-'1f~,11-'11~,11, 
II ~, tt ,~s II ~ II-' II ~: II C*- ' (k ' l ' )  -'2 <-_- e, e, . 

" =  i = l  

Combining these two inequalities we get the left hand side inequality of (1.17). 

Again, the right hand side inequality is obtained in the same way. 

We prove now (iii). We prove that for t with n _-_ 2 "~§ and all j = 1 , . . . ,  n 

we have 

From (1.18) we get immediately (iii). Indeed, (1.18) gives for j = 1 

I1~ II C*-'(klk ' l ' ) - '~ '  ~V~n <- e, <= C * ' ( k l k ' l ' ) "  XFn. 

Putting these inequalities into (1.18) gives (iii). We verify (1.18). Clearly, by (ii) 

we get (1.18) for j =[n(rs)-l] ,  ' ' ' , n .  We get by (i) and (ii) for all j = 

[ .  (rs)-2], .- ., [ . ( r s ) - q  

C._l(klk,l,)_2oll~e,l[<__ [T  J" 

Combining these two inequalities we get for j = [ n ( r s ) - 2 1 ,  ' '  -, [n(rs)-q 

C'2,k,~',56U~ello,~U~ell 
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This process is repeated t times such that n <-<_ (rs)'. Thus we have the left hand 

side inequality of (1.18). The right hand side inequality is established in the same 

way. []  

LE~aA 1.8. Let E and F be Banach space with symmetric bases {e,}7-1 and 

}~=1 such that [or some C > 0 and all j = 1 , . . . ,  n 

c'll e, II  cl[ e[I 
Thus we have for all a~ ~ R, i = 1 , . . . ,  n 

[I I1 ,,,11 [I (8C log n)-I a~e~ <- a <= 8C log n a~e~ . 

We skip the simple proof. 

PROOF OF TI-rEOREt,! 1.1. We consider a map A ~ L(E ,  F)  with IIA II = 1 and 

II A -111 --< c.  Moreover,  we consider k, ! E N (resp. k', l' E N )  given by Lemma 

1.2 for the matrix 

((A (e~), f* ))?a =~ (resp. ((A -1~ ), e * ))~.~ =1 ). 

We show that the numbers k, l, k',  l' are uniformly bounded by a constant that 

depends only on d(E,  F) and r. Thus we get that some diagonal elements of the 
matrices must be big. 

By assumption and by Lemmas 1.7 and 1.8 we get 

(1.19) n" <= d(E,  l~) <- 64C*2' (k tk ' l ' y  'a (log n) 2. 

We consider two cases, t = 1 and t _-> 2. If t = 1 we observe by Lemma 1.2 

C-1~(kl)-22 k+' <-_ n and ~C-l(k'l')-22k'+r <= n. 

On the other hand, we have n _-<2 k+t+k'+r. Thus we get from (1.19) 

(~6C-~(klk'l')-22k§247 "t2 <- 64C*2(klk'l ')2a(k + ! + k '  + l') ~. 

Obviously, k, l, k', l' are bounded by a constant depending on ly  on r and 
d(E,  12). If t => 2 we have 2 "-lx~+t+~'+r) < n = 2 "k+t+k'+r). Thus we get from (1.19) 

2t'-z)'tk+'+k'+r) -----~ 64C*2'(klk'i')2'~t2(k + ! + k '  + l ')  2. 

Therefore 

2 r(k+t+k'+l')14 ~ 8C*t l" (k lk ' l ' )a (k  + I + k ' +  I'). 

Again, it follows that k, l, k', i' are bounded. 
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Recalling the meaning of k, l, k' ,  l' in Lemma 1.2 we get that for a constant 

d = d(r, d ( E , / 2 ) ) > 0  there are dn rows 

n ( ( A ( e j ) , f , ) ) j ~  and ((A-l(~),e~))7=l 

each containing at least one coordinate with absolute value greater than d. So, 

we have mutually disjoint subsets M, of { t , . . . ,  n} and indices j,, t = 1 , . . . ,  v 

such that 

(1.20) ~ I M, I ---- d,, 
1=1 

(1.21) I(Ate,,),/*,)l>-_d for all i E M,. 

Without restriction we may assume that j, = t, t = 1 , . . . ,  v. So we get for 

al >= a2 >= " "  = > ae, >=0 

By the Khintchine and triangle inequalities we get 

1 ~  n ,1/2 ,,=,a,e, ll>=H  f,l[ 

Since we have symmetricity and the first numbers a~,. �9 ao are the greatest we 

get 

II V~ 
j=l II i=1 

By symmetricity we extend this inequality from nd coordinates to n coordinates. 

The left hand side inequality is obtained in the same way by considering the 

matrix ((A -1(~), e * ))7.j=1. []  

2. On the partial uniqueness of unconditional bases 

LEMMA 2.1. Let {e,}~=l be a basis o f  E such that  for  some  C > 0  we have  

II II cll  II (2.1) C -~ e, e,e, = < ei 
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for all signs e~= +-1, i = l , . - - , n .  Let i d~L(E * ,12 . )  be the operator 
n id(y~7=l a,e, ) = (a,)~=l. Then 

~ll~ II 7rl(id) =< V2 e~ . 

PROOF. By using the Khintchine inequality we get 

l n (/----~1)1/2 ~ ~ I ~ I V 2 ~  la'~12 =<k=l 2-" ,=1 e,a~ 

=<C e~ sup a ~ e * , x  . 
II Ilxll =1 k =1 

L E n A  2.2. Let {e,}7~1 and ~}7=1 be bases o[ E and F with 

(2.2) C?l [I ,=l ~ e, 11= < J[ i=1 ~ eiei 11 < C1 11 i=1 ~ ei I[' 

(=~, c-,ll~, II II~ II I1~ II '~ _-< e,f*, < C ~  f * ,  "= i=1 

for all signs e, = +- 1, i = 1 , . . . ,  n. Then we have for all A ~ L (E, F)  

(2.4) I (A(e , ) , f~) l  2 =<v~C, GIIAII e, f* . 
j = l  I=1 "= i=1 

PROOF.  

/ )'21~ "11 j = l  i=l i = l  

C2(~__~[[(id )(/ ') l l  ) ( u ~ l l ~  ,~11) <= o A t  2 s + 

where id E L (E *, 12) with id(~'=l a~e * ) = (a , )~ : , .  Thus we get with Lemma 2.1 

[(A(e,) , f~)[  2 =<C2 *, "n',(idoA t) 
j=l i =1 

I1~, II c * IIe'll=,(id) 

I1~ II I1~ II <= v 2  c,  c2II A ll I* e, . "= i=1 

[] 

[] 
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LEMMA 2.3.  

(2.5) 

(2.6) 

/or all signs e~, ~, = +-1, 

Then 

Let {e,)~'=l and ~}~'=1 be bases o[ E and F with 

N~'e'IIII~'e*II~C'~ 

i = 1 , . . . ,  n. Moreover, let A E L (E, F) be invertible. 

~CC~"a"ll~elf 
PROOF. "[he right hand side inequality is an immediate consequence of 

Lemma 2.2. In order to prove the left hand side inequality we observe first by 
Lemma 2.2 

Jl~ II Jf~ fJ (2.7) ~ ~ [~fJ, A-lt(e*i))12 1 / 2  
/=1 i=1 "= 

Since we have H61der's inequality 

we get 

By this and (2.7) we get 

.~ ~ ~ClC~"A '" I1~ e' II II,-~"H(~ (,:~ '~A ~e' "~'~)"~) 
This gives the left hand side inequality. []  

LEMMA 2.4. L e t A  = {a,j}~.j-i be a n x n-matrix and A -~ = {bij}~,~=~ its inverse. 

Suppose that [or some p, 1 <= p < 2 

(2.8) [a,, I p <-_ C, for all i = 1 , . . . ,  n, 

(2.9) I b,, 1: --< Gn .  
iffil i=1 
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Then, for all d >0 there are e = e(d, CI, C2) >0, a subset M of {1,..., n} with 
[MI--> [(1 - d)n] and a sequence ( i, j ( i ) ), i E M, such that 

PROOF. We put 

la,,j~,)[~e and ]bw).,J>=e. 

I 
Certainly ]MJ => [(1 - d)nl. Together with (2.8) and ET=, J a,,bj, I -  -> 1 we get the 
desired result since p < 2. [] 

PROPOSmON 2.5. Let {ei}?=j and ~}7=, be unconditional bases in E and F 
with d(E, F) <-_ C and 

(2.10) C--111 ~ ei 11----II If --< cll e, I1' 

(2.11) ] [ ~ e ' l l f l ~ e * l  ,=1 

(2.12) (i=~.~l[a, lP)l/P<=Cl[~a,e,[] forsomep, l<=p<2, 

and all a, E R, i=  1, . . . ,  n. Then, there are constants C*= C*(C,p)>O, 8 = 
8(C,p)>0  and a subset M o[ {1 , . . . ,n}  with [Ml>-_Sn and 

C*-I II , ~  a,e, I[_- < [I ~ a,fi [I _-< C* ]l , ~  a,e, I[ 

[or all a~ E R, i = 1 , . . . ,  n. 

PROOF. We consider A E L(F,E)  with IIAIIIIA-1II = d(E,F). Because of 
(2.10) and (2.11) we may apply Lemma 2.3. We get 

~(~](a-l(e,) ,[*)[2)1/2<=C'n.  
i=1 i=1 

Moreover, by (2.12) we have 

IIa II- -> II a 0~)ll --> C-'( ,o,~ I (a 0~), e: )1") I'P. 

So we can apply Lemma 2.4 for d = �89 We get that there is a subset M of 
{1,..., n} with I MI--[�89 and a sequence (j, i(j)), j E M, with 

(2.13) I(A0~),e,0))l----e and I(A-~(e,o)),f~>l>e. 
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On the other hand we have 

a, = card{j l iq)  = l} =< e-2d(E, F). 

Indeed, 

d(U, F) = IIA II IIA-'II ~ IIm '(e*)l] IIA-'(e,) I] 

=1 

Therefore, we find even a sequence (i,,j,), t = 1,--. ,  a = [�89 F)-'] such 
that 

(2.14) I(A (~,), e*,) I => e 

We have for all signs 

and I(A-'(e,,),f*,)l>=e. 

,, a ,, II ~ a,  fl o II ,~ ~ o a ~ , If 
By the Khintchine inequality and the triangle inequality and (2.14) we get 

\ 1/2 II 
N'/21IAHI],__~ ~ a,~, ]l => l[ ~_~ ~ ( ,~  ] a ' (a~ , ) , e* ) ,2 )  e, H 

> [a,(A~,~ e *~12/ e ] '  " I l l  ] il 
t= l  

o,ll~ :, a'e"l] 
In the same way we get 

THEOREM 2.6. Let {e,}L1 be a symmetric basis of E and ~}~=, be an 

unconditional basis o f F  with d(E, F) <= C and cotype2(E) _-_N C. Suppose that one 

o[ the bases {e~ }r-~ or ~ }i'=1 dominates the unit vector basis of l~, 1 <= p < 2. Then 

there are constants C*=C*(C,p )>O,  e =e (C ,p )>O and a subset M 4 

{1,. .- ,n} such that IMl>=en and 

c * ' l l , a a ,  e , [ l<=l l ,~af l l -~c* l l , aa ,e ,  II 

for all a, E R, i = 1 , . . . ,  n. 
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PROOF. We have to verify that we are in the situation of Proposition 2.5. 
Since {ei}7=l is a symmetric basis (2.11) is valid. By theorem 3.1 in [2] we have 
that lIE;'=1 e, ][ and II~Z=lf, II are proportional to 1r~(E)(resp. crl(F)). Therefore 
(2.10) is true and (2.11) is also true for the basis ~};'=~. (2.12) is valid by 
assumption. [] 

COROLLARY 2.7. Let I~| denote the matrix space 

[li.,=~a,,e,,ll=(,=~_~l(,=~laqlP)"P) ''" , 1-<-p,r <2 .  

Then {sbc(l~| E N} is unbounded if and only if p ~  r. 

PROOF. If p = r we have obviously symmetric bases (with constant 1). Now, 
suppose p ~  r. Observe that for some C, > 0 we have cotype2 (l~| l~) =< C, for all 
n E N. It is obvious that for q = max{r,p} 

a,jeq >= l a,j I q �9 
i,j=l i,j=l 

Thus we may apply Theorem 2.6. We assume that there is a sequence of spaces 
F,, n EN,  with symmetric bases ~j}i".j=~ such that for some (?2>0 we have 

d(F., I~| ) <-_- (?2. 

By Theorem 2.6 we get for some C* >0 ,  e > 0  and M C{(i,j)l i,j = 1 , . . . ,  n} 
with [Ml>=en "- 

c ' l l  ~ a,,ei, 11_- < l[ ~ aq[q 1[---- C'II  ~ aqeq I]" 

We find at least one i0 and jo such that 

card{M O {(i0, j ) ] j  = 1 , . . . ,  n}} => en, 

card{M t-I {(i, jo)[i = 1,- . . ,  n}} => en. 

By this and the symmetricity of ~j},~j=, we get a contradiction. [] 
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